Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
fseg
select
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4.
L
:
T
List
5.
l2
= (
L
@
l1
)
6.
i
:
7.
i
< ||
l1
||
l1
[
i
] = (
L
@
l1
)[((||
L
@
l1
|| - ||
l1
||)+
i
)]
latex
by ((((RWO "select_append_back" 0)
CollapseTHENA (Auto
))
)
CollapseTHEN ((((Try (((EqCD)
Co
CollapseTHEN (Auto
))
))
)
CollapseTHEN (((RWO "length_append" 0)
CollapseTHEN (Auto'))
))
))
C
latex
C
.
Definitions
S
T
,
|
g
|
,
{
i
..
j
}
,
Void
,
i
j
<
k
,
l
[
i
]
,
#$n
,
,
T
,
True
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
-
n
,
A
B
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
,
,
n
+
m
,
||
as
||
,
as
@
bs
,
a
<
b
,
,
type
List
,
Type
,
s
=
t
,
t
T
,
n
-
m
Lemmas
select
append
back
,
int
seg
wf
,
member
wf
,
append
wf
,
true
wf
,
select
wf
,
squash
wf
,
le
wf
,
length
wf1
,
iff
wf
,
rev
implies
wf
,
add
functionality
wrt
eq
,
length
append
origin